Cloud LSVA

Large Scale Video Analysis

EUROPEAN COMMISSION
DG Communications Networks, Content & Technology
Horizon 2020 Research and Innovation Programme
Grant Agreement Nr 6880099

Final report on data legal requirements and implemented data protection approaches

<table>
<thead>
<tr>
<th>Deliverable no.</th>
<th>Deliverable 2.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissemination level</td>
<td>Public</td>
</tr>
<tr>
<td>Work Package no.</td>
<td>EUDPD, GDPR</td>
</tr>
<tr>
<td>Main author(s)</td>
<td>Professor Raymond J Friel ULIM</td>
</tr>
<tr>
<td>Co-author(s)</td>
<td></td>
</tr>
<tr>
<td>Version Nr (F: final, D: draft)</td>
<td>Draft 1.0</td>
</tr>
<tr>
<td>File Name</td>
<td>Cloud LSVA Data Protection Ver 1 M26</td>
</tr>
<tr>
<td>Project Start Date and Duration</td>
<td>01 January 2016, 36 months</td>
</tr>
</tbody>
</table>

Project funded by the European Union’s Horizon 2020 Research and Innovation Programme (2014 – 2020)
Document Control Sheet

Main author(s) or editor(s): Professor Raymond J Friel ULIM
Work area: EUDPD, GDPR
Document title: Cloud LSVA Data Protection Ver 1 M14 Deliverable.ibm_reviewed.docx

Version history:

<table>
<thead>
<tr>
<th>Version number</th>
<th>Date</th>
<th>Main author</th>
<th>Summary of changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>v0.1</td>
<td>19/02/2018</td>
<td>Professor Friel</td>
<td>Initial Draft</td>
</tr>
<tr>
<td>v0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draft 1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Approval:

<table>
<thead>
<tr>
<th>Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepared</td>
<td>Professor Raymond J Friel ULIM</td>
</tr>
<tr>
<td>Reviewed</td>
<td></td>
</tr>
<tr>
<td>Authorised</td>
<td></td>
</tr>
</tbody>
</table>

Circulation:

<table>
<thead>
<tr>
<th>Recipient</th>
<th>Date of submission</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td></td>
</tr>
<tr>
<td>Cloud LSVA consortium</td>
<td></td>
</tr>
</tbody>
</table>

Legal Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that the information is fit for any particular purpose. The above referenced consortium members shall have no liability for damages of any kind including without limitation direct, special, indirect, or consequential damages that may result from the use of these materials subject to any liability which is mandatory due to applicable law. © 2016 by Cloud LSVA Consortium.
Contents

Executive Summary ... 5

1 **Introduction** .. 8

2 **Background to Data Protection – the fear agenda** 10

3 **Privacy as an International Human Right** .. 10

4 **EU Data Protection** ... 11
 4.1 **Directives explained** ... 11

5 **EU Data Protection Directive** .. 12
 5.1 **Definitions and Terms** .. 12
 5.2 **Legal Obligations on data controllers and processors** 14

6 **How Cloud LSVA differs from traditional data protection models** 15

7 **The EU General Data Protection Regulation** 18

8 **Cloud LSVA Project and the Data Environment** 19

9 **Specific Cloud LSVA application** ... 22
 9.1 **Research Phase** .. 22
 9.1.1 **Privacy by Design in the Research Phase** 24
 9.1.2 **Consent** .. 24
 9.1.3 **Non-consensual data acquisition** .. 26
 9.1.4 **CCTV analogy** ... 27
 9.1.5 **Drone videography and data protection** 28
 9.2 **Data Controller and Processor** ... 30
 9.3 **Administration, Sanctions and Fines** .. 30

10 **Recent case law** .. 31
 10.1 **Cahen v Toyota Motor Corporation** ... 31

11 **International Data Transmission and Storage** 32
 11.1 **The impact of the GDPR** .. 33

12 **Commercial interests in the data** ... 36

13 **Contractual allocation of data privacy risks** 38
Executive Summary

The aim of this project is to develop a software platform for efficient and collaborative semiautomatic labelling and exploitation of large-scale video data solving existing needs for ADAS and Digital Cartography industries.

Cloud-LSVA will use Big Data Technologies to address the open problem of a lack of software tools, and hardware platforms, to annotate petabyte scale video datasets, with the focus on the automotive industry. Annotations of road traffic objects, events and scenes are critical for training and testing computer vision techniques that are the heart of modern Advanced Driver Assistance Systems and Navigation systems. Providing this capability will establish a sustainable basis to drive forward automotive Big Data Technologies.

As part of Cloud-LSVA project, the objective of WP2 is to examine scene recording, network and Cloud based data management. In particular deliverables 2.4 and 2.6 requires a report, and a final report respectively on the data legal requirements and implemented data protection approaches.

Following an extensive literature review and legislative and jurisprudential research on the impact of data protection regulations as they apply to autonomous and semi-autonomous connected vehicles specifically using the technology under development in Cloud LSVA, this is the final report as set out under deliverable 2.6 and is based on large measure the earlier report submitted for deliverable 2.4. It does however address the following:

The implementation of the General Data Protection Regulation as it stands as of February 2018 bearing in mind that the effective date for that Regulation is May 2018. Moreover, member states still have some discretion in certain aspects of its implementation and that as of February 2018 even EU and national data protection agencies have substantial gaps in guidance on the implementation of the measure.

The changing nature of the technological approach in Cloud LSVA as it went through the iterations from Alpha to Gamma prototypes.

Verbal feedback at the Mid Term Review regarding the GDPR and commercialization issues around the data.

Written feedback from the Mid Term Review regarding contractual allocation of data privacy risks.
Based on these caveats, the report notes the following:

Cloud LSVA will acquire personal and non-personal data.

No privacy issues arise with respect to non-personal data, but the nature of the technology is such that it may have significant commercial value. In order to provide a sufficient number of different use case scenarios, many millions of kilometres may have to be driven, collecting information of a non-personal nature which would be extremely useful for market players.

Although this non-personal data falls outside the scope of the terms of reference of the project, there are a number of potential legal devices that can be used to protect any commercial interest in the relevant data (such as secrecy and the Database directive) is included towards the end of this report.

Cloud LSVA will acquire personal information as part of its data acquisition technology.

That personal data must be obtained, secured and utilized in strict accordance with relevant EU and national data protection frameworks.

That the current EU directive permits national variations in implementation and sets a minimum level of protection that must apply in all member states.

Simply put acquired data must be obtained with informed consent, used only for the purposes for which it was acquired and deleted after that purpose has been completed.

There is an implicit assumption that the storage of such personal data will have sufficient security as is consistent with the potential risk of breach. That level of security is beyond the scope of this deliverable but ISO standards are available.

Cloud LSVA project has two distinct phases: research and implementable technology. Although it is possible to distinguish these two phases for data protection issues, the project must be cognizant of “privacy by design” and the use of Privacy Impact Assessments as part of best practice.

In the research phase, although there is no general exception to data protection provisions that arise to data collected for research purposes, there are some exceptions to the general principles. Outside of this, data protection provisions should utilize full consent by way of contract provisions for participants in the research.

In the implementable technology phase, it should be noted that the project will be completed at the same time as the provisions of the EU General Data Protection Regulation takes effect in 2018 and in pursuing privacy by design this is the standard to which the project should look to.
The EU General Data Protection Regulation will significantly strengthen data protection provisions including the requirements for a valid consent (unambiguous) and liability for data processors as well as controllers together with stronger penalties and sanctions.

The acquisition of data where consent can be given, must include not merely owners or registered users but also other users. This will require appropriate visual or audio notices regarding data protection issues. It will still require anonymization of personal data and the use of contractual provisions to scope the risk. In that regard the Global Automobile manufacturers guiding principles are instructive.

The acquisition of data where consent is not possible, for example other road users, can be addressed by analogy to CCTV cameras, that is the information will solely be used for a socially desirable purpose (here the safety of human life) and for no other purpose. Again, anonymization and secured storage of the data is a pre-requisite.

Internationally, a guiding principle which appears to be emerging is that there needs to be higher levels of data protection where the technology is mandatory as distinct from optional.

Given the mobile nature of the automobiles, the location and transmission of data is likely to have an international dimension. If this all occurs within the EU the issue is relatively easily dealt with. If it occurs outside of the EU, then it must be in accordance with the new GDPR provisions. These include essential equivalency certification of non EU states by the Commission, Standard Contract Clauses, Binding Corporate Rules and certification or compliance by codes of conduct usually mandated by trade associations. All of these are designed to restrict the transfer of data outside the EU unless there is a robustness to the claim that it will be treated with the same level of data protection as if it were held within the EU.

In addition, the transmission of data and the connectivity of vehicles in general has led to the development of new standards in cybersecurity particularly from the SAE and J3061 as well as EVITA. Further documentation such as ISO 27001 (Information Security Management System) and ISO 27032 (Guidelines for Cybersecurity). A Security Development Lifecycle (SDL) will be an integral component in product developments in this area.

New developments outside of these frameworks will test the limits of privacy. Case law is emerging concerning potential economic harm and greater use of contractual terms for risk allocation and indemnification are increasingly common. Some member states are implementing counter-terrorist measures that will impact on data protection.

All of this is reflective of the changing environment that the research and introduction of this technology is experiencing.
1 Introduction

The purpose of this document is to provide a comprehensive yet accessible survey of the data protection framework as it applies to the technology required for autonomous and semi-autonomous vehicles generally and Cloud LSVA technology specifically.

The use of the word ‘accessible’ is designed to capture the fact that this is not designed to be a high level, abstract and conceptual legal paper aimed at a professional and academic legal individual familiar with various legal taxonomies. Yet neither is it designed to mimic one of the many over-simplistic approaches found on the internet aimed either at attracting business or spurring agenda driven groupings in favour of or opposed to developing technology on ideological grounds.

Instead the deliverable is written in a style and format designed to be usable by the differing discipline specialists likely to be involved in the development of this technology. This is no easy task and to claim success would be to demonstrate hubris likely to lead to a fall. It would be better to say that at least this was the aim of the deliverable and to leave the judgment of its success or failure on those who read it.

There are however two caveats that need to be addressed here. The preceding year (2016) has seen rapid developments across the data protection framework and the technology involved in autonomous and semi-autonomous vehicles. The pace of change has been significant. In fact so significant that the already unstable ground upon which data protection and this particular technology sat only 2 or 3 years ago, has become even further unstable. Much of this deliverable has had to deal with this uncertainty in a manner which brings some stability to the area but which cannot hide entirely the buffeting winds of change blowing through this sector. In some instances the only option has been to resort to speculative assumptions as to how things will develop. At each stage, best efforts have been made to reduce the amount of uncertainty and minimize the speculative element, raising the probability that it represents the final outcome. Often there is an expectation that the law, and its practitioners, have failed if they cannot provide full certainty. It may surprise some to say the law is a work in progress and that is why it is called the practice of law. In many ways the law shares the same scientific voyage from hypothesis to proof in a journey that never seems to end.

The second caveat is that the technology that we are dealing with in autonomous and semi-autonomous vehicles, and in particular connected vehicles which communicate with each other, local infrastructure and the cloud, relies upon the acquisition and analysis of massive amounts of data. That data will fall into many categories but our concern here is with only one type of data: data likely to lead to the identification of a human (or as the 1995 Directive de-humanisingly terms it: a data subject).

Although there is no evidence to back up this particular statistical claim, one suspects that the amount of personal data likely to identify an individual will be far outweighed by other categories of data.
collected. But it is only personal data that this deliverable deals with and for which there exists a legal and regulatory framework which governs how that data must be acquired and handled.

The non-personal data is free from any such limitations or restrictions as to use. Yet in fact that data is probably and potentially of far greater commercial value. Non-personal data such as the weather conditions at the time of an accident, the operating temperature at which a vehicle component failed may provide immense commercial insights into innovation and product change. Product liability insurers for example may find mass data on the performance of a particular vehicle component hugely valuable in setting premiums or determining whether a recall is the only option.

Non-personal data in many ways therefore differs only in that it does not have a formal regulatory framework by which it is controlled. But given the potential value, it seems as a matter of commercial reality that apart from the consent issue, which is crucial in personal data, non-personal data should at least be sufficiently secure in its transmission, storage and retrieval as personal data. Moreover this non-personal data may constitute some Intellectual Property Right. Remember non-personal data is the equivalent of a large sum of cash: it is as deserving of protection as personal data. The failure to protect the monetary value that might reside in non-personal data may leave an entity open to legal liability for breach of duty. However, that is beyond the scope of this deliverable. We are confined to deal only with data protection rules as they apply to personal data.

In summary

- Both the law and technology underpinning autonomous and semi-autonomous vehicles is in a rapid state of flux creating uncertainty
- This work only deals with personal data acquired as a result of this technology; personal data is that data likely to lead to the identification of the individual.
- Personal data is covered by a well-established legal and regulatory framework.
- Non-personal data acquired as a result of this technology is not covered but it may have significant commercial value and should therefore be the subject of similar protections based on a duty of care.

With those caveats in mind we turn now to deal with the various issues that arise with respect to personal data.
2 Background to Data Protection – the fear agenda

Privacy is an essential part of human nature since time immemorial. Although few can deny this fact, the attempt to capture what it means in operation is not without difficulty. Each of us have differing levels of what we consider public versus private information. Indeed even within that context, we have differing levels of acceptability as to who should have access to our private information: the more intimate a relationship, the less we regard as private. Some of that need for privacy is driven by fear. We tend to regard that as private which is likely to cause us harm in our professional or private lives. We will reveal more when that fear is counterbalanced by the advantages of such a revelation. For example, a person may hide an affair from their spouse but will reveal it to their doctor in the interests of their own health. Although coupling privacy with fear may seem unduly negative, it is not meant to carry any particular connotation other than in dealing with privacy issues, particularly as they arise in autonomous and semi-autonomous vehicle technology, it would be wiser to recognize one of the primary drivers of privacy concerns by the public.

3 Privacy as an International Human Right

This human need for privacy finds expression in major international Conventions, Treaties and national Constitutions and laws. And it does so in a way which both reflects the illusory nature of what information should be regarded as private and from whom. For example the European Convention on Human Rights protects privacy based on the right to a family life (Art 8.1). But it does not specifically define what that privacy relates to, although in Art 8.2 it does highlight one of the key parties who we as citizens fear will most likely invade our privacy to our detriment: the state.

It is no co-incidence that the vast bulk of formalized privacy protections emerge after World War II. The Nazi regime excelled in acquiring personal information from its citizens and conquered people in a scientific and comprehensive manner never before seen. The Nazi’s understood that information is power and both amassed and filed as much information as was then humanly possible, deploying huge financial and human resources to this venture. In doing so they too were driven by fear. Fear that without this information their grip on power would be lost. And this fear resulted in creating even more fear for the people they ruled: that their personal information could be used against them. The net result: an ethos within public institutions that peace and security required access to all areas of their citizen’s information and a belief in the citizenry that all information acquired by the state would ultimately be used against them in harmful ways. Long after the Nazi’s would be vanquished, the element of fear, both by the state and its citizens, to privacy would drive legal and political discourse for decades to come.
4 EU Data Protection

4.1 Directives explained

In an EU context, national and international concerns found expression in the Data Protection Directive. Simply put, a Directive is an order by the EU to its member states requiring that certain objectives be achieved but leaving the member state free as to how this should be achieved. Perhaps the best example of this would be through the issue of equal pay between men and women for like work. An EU Directive might mandate that each member state should achieve the objective of equal pay between men and women but in doing so the state is free as to how this is to be done. Our initial reaction might be to assume that it is achievable by raising the pay of women to match that of their male colleagues. But of course the objective could also be achieved by lowering the pay of their male colleagues to match that of their female counterparts. Both approaches achieve the objective but in radically different ways.

The concept of the Directive at EU law must be contrasted with an EU regulation, and we will return to that distinction later. But before leaving the analysis of a Directive as a legislative tool, there are two further issues that must be addressed. First, although Directives are couched in relatively vague terms, some Directives may have a sufficient level of detail that there is in fact very little discretion in the member state. For example, in the above example the Directive might have said that it was required to create equal pay between men and women by raising the pay of women to match their male counterparts. So the terms of the Directive may be more prescriptive of its objective, leaving little choice in how it is to be achieved.

Second, Directives normally establish a floor or base-line minimum of an obligation on the member state which is often free to add to that if it is wishes to do so. For example, in the equal pay example above, a member state may in addition to legislating for equal pay, provide additional rights beyond equal pay such as a minimum wage. So long as what the state adds does not defeat the purposes or objective of the Directive this is permissible.

Finally, it should be noted that although Directives usually require national implementing legislation such as an Act in order to be incorporated into the national legal system. Without that national enactment, the Directive is not yet law within that member state. However, an EU citizen may in limited circumstances acquire rights under an EU Directive that has not been enacted into national law where the Directive is clear and unconditional and the time for enactment has passed.
5 EU Data Protection Directive

5.1 Definitions and Terms

Participants in the Cloud LSVA project need to be aware that the concepts behind data and data protection are legally defined. As with all legal definitions, the intention is to provide an exactness from which certainty as to application to events can be ensured. Having said that, all wording carries inherent vagueness and uncertainty but for the purposes of this document we can provide relevant definitions and commentary as to potential application to the Cloud LSVA project.

Data Subject means an individual from, or about, whom the data was collected.

Cloud LSVA: this will cover any person who is recorded by the technology including other road users, pedestrians, people in buildings adjacent to the roadway etc.

Data includes information that is being processed by means of equipment operating automatically in response to instructions given for that purpose, or which is recorded with the intention that it should be processed by means of such equipment.

Cloud LSVA: the recording technology which captures video footage for analysis will fall within this category.

Personal data means data relating to a living individual who is or can be identified either from the data or from the data in conjunction with other information that is in, or is likely to come into, the possession of the data controller

Cloud LSVA: this will restrict the application of data protection to that video footage which presents a clear picture of the data subject. It is not necessary to be in a position to identify the data subject at the time the recording is either made or analysed. The issue is whether the data controller is likely to come into possession of other information with which to make an identification.

Sensitive personal data means personal data as to the commission or alleged commission of any offence by the data subject, or any proceedings for an offence committed or alleged to have been committed by the data subject.
Cloud LSVA: This may arise where the video recording captures an individual in a suspected criminal act (a recording of an individual mugging a pedestrian) or which might be used in evidence to support a prosecution based on the alleged criminal act (a recording of an individual running from away bank robbery with a bank money bag).

Data controller/processer is a person (natural or legal) who controls the contents and use of the data, including one who processes the data at the request of the data controller.

Cloud LSVA: For the purposes of this programme, the controller would be the entity who directs the use to which the video recordings are to be put. It is not a requirement that the controller have access to the data or process it themselves. It would thus include 3rd parties who might process the information. Example: video recordings are sent back to a central database owned by X who in fact has contracted out the analysis of the recordings to Y. X is the data controller and Y is the data processor.

Processing, of or in relation to information or data, means performing any operation or set of operations on the information or data, whether or not by automatic means, including-

(a) Obtaining, recording or keeping the information or data
(b) Collecting, organising, storing, altering or adapting the information or data, (c) retrieving, consulting or using the information or data,
(d) Disclosing the information or data by transmitting, disseminating or otherwise making it available, or,
(e) Aligning, combining, blocking, erasing or destroying the information or data, and, cognate words shall be construed accordingly.

Cloud LSVA: It is fairly clear that the project will involve processing any data obtained.

Summary
The Cloud LSVA programme will clearly involve the acquisition of data, including some personal or sensitive data although this is less likely. That data will by definition be subject to the control of one of more persons (including legal persons such as companies) and will also be the subject of processing within the meaning of the provisions.
5.2 Legal Obligations on data controllers and processors

Data controllers/processors must comply with the following

- Obtain and process information fairly and compatible with the purposes for which it was given.
- Data should be obtained and processed only the extent that it is adequate, relevant and proportionate to the purpose it was obtained for.
- Store such information safely and securely.
- Retain the information no longer than is necessary for the specified purpose/s.
- Provide a copy of any relevant information on the data subject held by the data controller/processor

For the most part these are self-explanatory. However, it should be noted that the better view is to take a narrow, restrictive interpretation of the conditions, thus when faced with a choice, Cloud LSVA must take the approach which provides the greatest level of data protection. Making decisions based on an ‘arguable case’ is not appropriate.
6 How Cloud LSVA differs from traditional data protection models

The basic thrust of the legal protection on data revolves around the classic situation where the data subject voluntarily provides the data to the data controller. Thus most of the rules concern issues surrounding the consent of the data subject, limiting the data that is acquired to the minimum necessary to achieve the stated objective of the data controller, and strictly prescribing the use to which the data is put and the ability to share that information for purposes other than that disclosed at the time of acquisition. Finally, it permitted the data subject to view the personal data held with a right to redress inaccuracies.

Cloud LSVA by design does not seek, nor could it reasonably endeavor to so seek, the prior consent of potential data subjects and therefore the application of the existing rules cannot be a straightforward matter. However this is not the same as saying the rules do not apply to Cloud LSVA but simply that they must be modified in application. The basic principles behind data protection remain as relevant to Cloud LSVA as they do the classic data acquisition model.

What then are the basic principles?

- Data protection is to be built in at every phase of the design process
- Ensuring that protection of data is the default setting for all design choices
- Given the non-consensual acquisition of data, the highest level of protection possible
- Clear rules with respect to processing and sharing of the data with external actors

It is also important to be aware that the level of data protection issues will escalate as Cloud LSVA goes through its design phases and that needs to be addressed within each stage

<table>
<thead>
<tr>
<th>Development Stage</th>
<th>Level of data protection issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test track development</td>
<td>Low</td>
</tr>
<tr>
<td>On road pilot stage</td>
<td>Medium</td>
</tr>
<tr>
<td>Commercial pre-production</td>
<td>High</td>
</tr>
</tbody>
</table>
Note however that even within a closed test track development, data protection issues are low, not non-existent.

Returning to the Directive on Data Protection, simply put it requires member states to enact legislation which regulates and controls the acquisition, storage and use of information to a minimum standard. The Directive is relatively specific such that there is little discretion in how a member state may achieve the over-riding objective of data protection.

There are a number of key principles to be found in the Directive which are of relevance to Cloud LSVA.

First, for the most part, the acquisition of information, or more technically data, is to be undertaken with the consent of the individual.

Second, that consent can only be effective if it is an ‘informed’ consent. Essentially, this means that the individual should know why the data is being collected, what use will be made of the data, where it will be stored and who will have access to it and for how long. Armed with this information, the individual is in a position to make an informed decision.

Third, the data acquirer should only obtain that data which is essential for the stated purpose. The data acquirer should not acquire more information than is necessary. There is therefore a minimalist approach to data acquisition.

Fourth, the captured data should be used only for the purposes stated and for no other reason. There is therefore a restricted approach to data usage.

Fifth, access to the data should tightly controlled so that only those parties who have a defined need to access the data are allowed to do so. There is therefore a secured access approach to data storage.

Finally, the data should be stored only for so long as is required to achieve the purpose for which the data had been acquired. Once this has achieved the data should be safely destroyed.

One way of looking at this would be to summarise data protection into four main principles as set out below:

Data Protection Directive Principles

- Informed Consent to the acquisition of data
- Minimalist approach to the acquisition of data
- Restricted use and secure storage of acquired data
- Timely destruction of acquired data

The Directive goes on to do other things such as the establishment of national agencies to enforce these provisions, but we are not concerned about these at this point.
Without dealing with it fully at this stage, it is clear that the technology behind Cloud LSVA does pose concrete challenges with respect to these principles:

- First, on the issue of informed consent, the recording of the scene around the vehicle will of necessity involve non-consensual acquisition of data.
- Second, the extent of the data that needs to be acquired appears to more comprehensive than might be assumed and the granularity of the required video data appears of a higher order than simple pixilation would achieve.
- Third, the acquired data will be communicated over V2C and V2V networks and both data transmission networks and cloud data storage will provide challenges for robust security frameworks.
- Finally, as Cloud LSVA involves continued computer learning by building up ever larger case scenes, it is unclear at what point the data can be deleted.

One of the issues that arises with respect to Cloud LSVA technology and the Directive is the changing technology on data acquisition and interrogation. The Directive represents an era when data acquisition was primarily paper based, predominantly provided by the data subject themselves and thereby gave an opportunity to the data subject to give or refuse consent.

None of these constraints apply with Cloud LSVA technology whose very nature will require the acquisition of non-consensual data. Moreover the scale of data which is to be acquired, stored and analysed is of exceptionally large volumes. In one way, the very scale of the information might be expected to provide a degree of comfort from the fear inherent in data abuse.

Although the Nazis were excellent in establishing processes to acquire and store data, a skill that for example would continue in East Germany with the Stazi secret police, it became obvious that excessive information is not that powerful unless it can be easily retrieved for a specific purpose. The limitation on data use was not its acquisition but its retrieval. Thus most of the information acquired would never be used due to the practical limitations on retrieving and cross-referencing the data. In the success of acquiring information lay the seeds of its limitation: inability to use ever increasing volumes of data.

Modern technology has not only exponentially increased the quantum of acquired and stored data but also exponentially increased the speed by which that data can be interrogated and relevant information extracted and used for specific purposes. The safety of limited use of ever increasing quantities of acquired data is now well and truly gone.

Certain events have a transformative effect on the nature of society. The advent of the Nazis impacted on international and national laws for decades after their demise. Today, new technology is creating a transformative environment for the implementation of Cloud LSVA technology. The fears encapsulated in the data protection provisions of the Directive are now being changed as a result of huge advances in technology never envisaged at its creation.
In summary

- The EU Data Protection Directive is premised on a limited technology environment.
- New technology, including Cloud LSVA, requires new approaches.

7 The EU General Data Protection Regulation

As a result, the EU has enacted a new data protection Regulation which will come into effect in 2018. A Regulation differs from a Directive discussed earlier in that it is binding on member states both as to the objective and the manner in which it is to be achieved. It is highly prescriptive and, unless specifically provided for, does not confer any discretion on the member state as to its application. In fact, not only is enabling legislation at national level not required, any attempt to ‘nationalise’ the directive through an implementing measure is prohibited. The Regulation provide rights to all EU citizens as soon as it becomes effective.

The GDPR represents a step change that reflects the transformative nature of data acquisition and retrieval technology. However it is reflective of the public fear that such technology has with respect to their privacy rights. In this way, the GDPR may not be conducive to the technology in Cloud LSVA.

In brief, the new GDPR provides significant enhancements to the safeguards which were present in the earlier Directive.

- First, the issue of consent has been strengthened to ensure that not only is the consent informed but that it is unambiguously given. It essentially removes implied consent as a valid consent.
- Second, it provides for the withdrawal of consent, a new innovation.
- Third, it extends the responsibility for data protection wider so as to include not only those who control data but also those who process it.
- Fourth, tightens up the control of data across borders by requiring in certain situations the presence of agents within the EU for data held by foreign entities.
- Finally, it significantly increases the penalties and sanctions that arise on breach of data protection rules, now calculated as a percentage of turnover.

The GDPR also provides for additional powers, co-operation and liaison between national agencies.

For Cloud LSVA, these new changes will provide additional challenges.
First on consent, the acquisition of non-consensual data will prove problematic and resort will have to be made to alternative models such as apply in CCTV and drone photography.

Second, clear delineation of data controllers and processors will be required as will increased contractual allocation of risk and responsibility between the various actors in the technology.

Third, given the mobile nature of automobiles which regularly cross borders, greater care needs to be taken both with respect to where the data is being acquired and where it is being sent. The departure of the UK from the EU for example may have substantial repercussions for EU visitors to that country using Cloud LSVA technology.

Finally, risk factors arising from the increased financial sanctions for data protection breaches will require enhanced re-evaluation of transmission, access and security for data by both processors and controllers.

This final report will further elaborate on the issues that the GDPR present.

8 Cloud LSVA Project and the Data Environment

This project provides additional challenges above and beyond that which arise naturally from the technology. First, the technology represents a dramatic fault line between two competing societal imperatives. On the one hand, increasing autonomous or semi-autonomous automobile technology holds out the prospect of increased public safety, lower incidence of death and personal injuries from road traffic accidents and a smarter more efficient transportation infrastructure. On the other hand, this technology requires immense data acquisition and analysis when the public mood is highly skeptical of the potential for abuse of this data.

Evidence of this societal mood is to be found in the EU purported introduction of eCall technology. This technology is to be a mandatory feature car sold within the EU from 2018 onwards. Simply put eCall is a facility which will enable a vehicle which has become disabled as a result of an accident to contact the emergency services and direct them to the location of the vehicle to provide medical services to injured occupants. The system is designed to be dormant until activated as a result of a crash. It will provide for quicker and more efficient use of first responder services such as ambulance and para-medics. The speed with which medical intervention occurs in these types of injuries has a significant impact on survivability and recovery outcomes for injured citizens. As an analogy, more soldiers survive in modern warfare because the Army is now able to provide timely access to medical attention with rapid helicopter extractions of wounded personnel. In that way, eCall is a positive intervention.

However, there is evidence of public resistance to this technology. The basis for this resistance is the fear, unfounded, that the technology will be used generally to track the vehicle and its user. That fear is based on the realization not merely that the technology to track the vehicle exists but there is complementary technology to interrogate the stored data and retrieve a record of the vehicle movements.
The fear is unfounded – the system is not operative until a crash is detected. However, it is interesting to note that people are willing to sacrifice safety to avoid privacy violations. In a head to head battle between personal safety and personal privacy, safety may not always win.

Second, the technology being used in Cloud LSVA is part of a general transformative technology for which society and the law is ill-prepared. Data protection law, as all other legal constructs, uses a paradigm case scenario through which rules are created, analysed and applied. In contract law for example, the primary paradigm consists of two people equally met discussing the sale and purchase of a horse who is also present. The law which enables that transaction to occur is then applied on a universal level and the simplicity of the transaction results in modifications to the rules when it encounters the reality of new factual situations. Thus contract law responds to the introduction of new technology, such as the postal system by modifying the rule on when an acceptance occurs to being the moment it is posted which is the opposite of that in the original paradigm where it is the moment the acceptance is heard or received. As new technology emerges, for example faxes, emails etc., the law adapts to the changing impact on the paradigm.

For data protection, the paradigm is that of the citizen who fills in a form providing personal and other information to another who is in a position of dominance over the citizen (such as a government agency or financial institution) and who has the capacity to use that information incorrectly to the detriment of the citizen. The legal construct is to empower the citizen through consent and disempower the dominant party through restriction on acquisition and use of the data acquired.

Cloud LSVA technology alters the paradigm since the aim is to acquire, primarily non-consensually, data to protect the citizen and for which the potential for detriment to the citizen is low.

One question that arises of a fundamental nature is whether or not the data protection paradigm is actually relevant to Cloud LSVA technology which might be deserving of its own paradigm. For example, should transportation technology be exempt from data protection rules and instead by the subject of sui generis rules applicable to transportation only. This is a wider issue than that posed in this project but is worth mentioning. On the other hand, as stated above, it is not clear that the public has an appetite to surrender privacy for safety.

The net effect is that Cloud LSVA is taking place within an uncertain legal framework which is currently uncertain and too vague to resolve the many conflicting imperatives.

Third, to add to that uncertainty the current rules such as they are, are about to be replaced by new rules in 2018. These new data protection rules are still not designed with Cloud LSVA technology in mind and so are also limited in terms of usefulness. However the real issue is that the project will span two different legal regimes. Research will be conducted mostly under one regime and implementation would take place under a different regime. And that leads to the next issue of concern.

Fourth, the project itself divides naturally into two distinct phases. The initial phase is the research phase which is currently underway. At the end of that research process, the aim presumably is to be in a position to provide implementable technology to the market. This division which previously would have
been accommodated simply by continuing the research and then back fitting data protection provisions is no longer appropriate. Today, the emphasis is on integrating privacy issues in the design process. There is considerable merit to this approach, and best practice demands it use. However, it poses additional tensions between scientists and engineers who seek solutions to a problem (how can we make the car engage in autonomous braking) and the lawyers who seek to ensure that the range of solutions to the problem is limited in order to be consistent with a law that itself is not clear (for example what is the lowest level of video quality required to achieve autonomous braking). Although well meaning, privacy by design may limit technological advances and implementation and certainly has the potential to limit the research phase of Cloud LSVA.

Finally, the implementation phase of Cloud LSVA may take place in a revised transportation risk/liability environment. If as is possible, society may choose to rebalance safety over privacy, given the enormous financial and personal costs arising from automobile accidents when compared to data breaches, it will require a new and dedicated framework. Any such framework runs the risk that the research of privacy by design which occurred under rules which had a different priority, may result in more costly designs that protect privacy issues that no longer require the same level of privacy in the new framework. As a corollary, a new framework may impose other restrictions that were not considered relevant under the previous privacy framework.

In summary

- First, competing societal imperatives: safety versus privacy. In that conflict, safety imperatives may not always supersede privacy concerns.
- Second, an uncertain legal environment which was designed for an era where the impact of new data collection and interrogation technology was not as advanced.
- Third, the whole area of data protection is in the process of change resulting in two differing legal regimes applying to the research and implementation phase of Cloud LSVA technology.
- Fourth, a research environment that requires privacy by design despite a lack of clarity about exactly what that privacy means in the context of semi-autonomous or autonomous vehicles.
- Finally, if a new regulatory framework for autonomous and semi-autonomous vehicles emerges it may make both make some limitations on the technology redundant while also exposing gaps in the technology under the new regime.
9 Specific Cloud LSVA application

9.1 Research Phase

Before dealing with this issue in more detail, a word of warning. Best practice would indicate that a privacy impact assessment should be undertaken, particularly given the extent to which data acquisition and use forms a key element to the technology. Although there is no legal requirement for this to be done, it is indicative of best practice in this area.

In the research phase of the project Cloud LSVA will be minimally impacted by the GDPR as it will not take effect until 2018 towards the end of the project pipeline. However, it will (a) be subject to the Directive which continues in effect and (b) should consider the implications of GDPR as part of the design by privacy.

With respect to the existing data protection provisions, any research conducted within this framework needs to comply with the general principles under the Directive mindful of the fact that national laws of the member state may add to the general protections available under the Directive. For example, the acquisition of data consistent with the Directive may be prohibited by the law of the member state where the research is taking place. Some jurisdictions have enhanced data protection provisions which may be more restrictive than the existing Directive or indeed the provisions of the Regulation.

What then are the existing provisions at EU level which Cloud LSVA needs to be aware of? Research conducted by the project needs to ensure compliance with the provisions of the Directive and in particular should be careful in securing an informed consent of all participant involved in the project. Although involvement in the project would in all probability give rise to a presumed consent to the acquisition of data and limited usage by third parties, there is no doubt that it would be advisable to secure explicit consent from any participant in the project which outlines the potential for personal data to be obtained and details the purpose for which it is to be used and the duration for which it is to be held.

It should be noted that such informed consent needs to be obtained not only from direct participants to the project but in two other situations as well. First, other data subjects who are not involved in the project also need to give their consent. For example, if the test vehicle is acquiring data while on a test track, other users of the test track, for example maintenance or other support workers should also give the relevant consent. In many cases a generic consent for these data subjects may be in place but it should be checked to ensure it covers this type of activity.

Second, the use of third party material, particularly videos should only be used subject to an explicit contractual agreement that the data was secured in accordance with the Directive or national provisions and that consent to its use by a third party has been given. It should be noted that under the Directive it is not necessary that the original consent given included a research purpose, so if the consent for example was provided for training purposes, it can be used for research purposes despite that not being expressly mentioned in the original consent.
Even where this is the case, any video or other data which has the potential to identify a data subject should be removed to the extent that it is not necessary for the research purpose. A classic example would be a picture or video which contains the license plate of a vehicle. Even if the data subject has consented to the initial data acquisition, the consent does not extend to information not necessary to the task. If the picture or video is being used to assess spatial requirements for autonomous technology, the license plate is not a necessary requirement for that task.

Once consent has been established, this will provide the framework within which the data can be used. However, that data must be secured from inappropriate access or use outside of that to which the consent has been given. Contractual frameworks in the consent process can seek to limit the consequences of such a breach but it is important there is sufficient security in place to protect the data from inappropriate or unauthorized access. Inappropriate access would be access by someone who has a right to access the material but does so for a reason unconnected to the project. For example, X accesses a video in order to identify a data subject. No consent would be asked or given for such a purpose so although X can access the material, X has committed a data breach due to inappropriate purpose.

Unauthorized access either by a participant of the project who does not have the right to such access or by a third party who hacks into the system must be guarded against. The former can be dealt with by internal protocols as to who has access and requiring them to record, even if only in their own notes, the purpose of the access. The latter requires a level of security commensurate with the dangers of a potential breach. As the dangers involved in breach are relatively low, the security level is not required to be excessive. However, security issues are not part of this deliverable and so are only raised as potential issues without fuller treatment.

Finally, as much of the data acquired in the research appears to be intended as part of a bank of case scenes within which the systems can engage in deep learning, this too needs to be addressed within the contractual consent framework in terms of the duration of storage of the data, although again data for research purposes can be retained indefinitely but only for the research purpose. Beyond that consideration should be given to additional anonymization of the data if possible the longer the data is being held.

In summary

- Cloud LSVA research will be primarily conducted under the EU Directive although the GDPR may impact towards the end.
- The EU Directive is a base line which national rules may add to. Participants should ensure compliance with local member state laws.
- Under the Directive Cloud LSVA should ensure full compliance by
 - Contractual consent frameworks of an explicit nature for participants and any non-participant data subject.
D2.6
V0.1

- Contractual consent framework assurances for 3rd party data including post acquisition anonymization of data where relevant
- Data minimization in general to that which is necessary to the project
- Secured system for access of data by participants
- Security systems to prevent unauthorized 3rd party access to a standard commensurate with the potential harm from data breach.

- Finally, consideration to undertaking a Privacy Impact Assessment analysis should be undertaken.

9.1.1 Privacy by Design in the Research Phase

As the outcome of the research project involves technology likely to be introduced under the new GDPR provisions, it is important that at all stages the significance of this Regulation forms an integral part of the research evolution. It is inappropriate to assume that data protection measures can be added on afterwards in a manner which is consistent with the Regulation.

What then are the primary features of the GDPR as pertain to Cloud LSVA and ‘privacy by design?’

9.1.2 Consent

The GDPR significantly strengthens the consent requirement of data subjects. From 2018, the consent must fully informed, explicit and unambiguous. It virtually brings to an end implicit or assumed consent. It will be for the data controller to prove that the consent was (a) obtained and (b) was based on full information. To that extent, privacy notices will need to be significantly strengthened. It should also be borne in mind that the GDPR requires that the language used in privacy notices or consents is plain and intelligible. Although the GDPR provisions indicate that consents and privacy notices may need to be lengthy, it is also clear that neither the length nor the terminology should prevent the data subject coming to a true consent.

As Cloud LSVA will record vehicle telemetry and will communicate this either V2C or V2V (or indeed V2I) it will require the consent of the driver. Where the driver is the owner this will be achieved through an initial contractual notification and consent procedure which will not impact on the technology. These consents will in best practice be governed not only by the GDPR but also by industry standards which may provide even greater protection. For example in the US, there is a Global Automakers General Principles on Data Protection. This provides a series of general guidelines with respect to Cloud LSVA technology:
Transparency

Participating Members commit to providing Owners and Registered Users with ready access to clear, meaningful notices about the Participating Member’s collection, use, and sharing of Covered Information.

Choice

Participating Members commit to offering Owners and Registered Users with certain choices regarding the collection, use, and sharing of Covered Information.

Respect for Context

Participating Members commit to using and sharing Covered Information in ways that are consistent with the context in which the Covered Information was collected, taking account of the likely impact on Owners and Registered Users.

Data Minimization

De-Identification & Retention: Participating Members commit to collecting Covered Information only as needed for legitimate business purposes. Participating Members commit to retaining Covered Information no longer than they determine necessary for legitimate business purposes.

Data Security

Participating Members commit to implementing reasonable measures to protect Covered Information against unauthorized access or use.

Integrity & Access

Participating Members commit to implementing reasonable measures to maintain the accuracy of Covered Information and commit to offering Owners and Registered Users reasonable means to review and correct Personal Subscription Information that they provide during the subscription or registration process for Vehicle Technologies and Services.

Accountability

Participating Members commit to taking reasonable steps to ensure that they and other entities that receive Covered Information adhere to the Principles.
These appear well founded and reasonable guidelines. However, it will not necessarily be the case that all users will be either owners or registered. In any event these guidelines will be superseded in all cases by legislative requirements under the GDPR where a conflict arises.

In that situation, activation of the vehicle should provide for an alert mechanism to the user that the vehicle is connected and relaying data to 3rd parties. How this alert occurs is flexible but again, the guiding principle must be one of informed, explicit and unambiguous consent. The use of a warning light on the dashboard may be compliant but only if there is sufficient universality to the warning light and general public understanding of the meaning of the warning light. An audio warning would also be a potential solution, however, language selection would also need to be built in. Other possible solutions may also be envisaged but one issue that needs to be considered in all of these potential solutions is whether consent is demonstrated by starting the vehicle or undertaking another step (for example pushing another button in the vehicle) which is more closely compliant with the provisions of the GDPR.

Moreover the addition of a consent mechanism separate to starting the vehicle might also help compliance with other provisions of the GDPR, particularly withdrawal of consent and the right to be forgotten. For example, if prior to starting the vehicle one had to slide a switch to the right to activate the connected element of the vehicle or to the left to deactivate the connection with the vehicle inoperative if the switch is not moved in either direction. On the other hand, legislation may mandate that vehicles have these safety devices and prohibit their de-activation.

In the US, the NHTSA in their 90 day rule making process for V2V communications indicated that mandatory safety devices would require higher levels of data protection than those which were voluntary. If so one would expect even stronger indices of consent to the use of connected devices, as well as strengthened use, storage, access and security obligations on the data controller.

9.1.3 Non-consensual data acquisition

By its very nature Cloud LSVA utilizes technology that potentially acquires personal data of 3rd parties without their consent, specifically other road users including cars, pedestrians etc.

Delizia Diaz, Legal Counsel and Data Protection Officer at Jaguar Land Rover, has said:

Relying on consent as the sole legal justification for all data use cases would be extremely difficult and un-user friendly for autonomous vehicles. Other legal justifications for handling personal data are available and may, in certain circumstances be more adequate in an
autonomous vehicle environment. In our view, there needs to be some level of mandatory data sharing for autonomous vehicle infrastructures to operate.

This view reflects the reality that for autonomous or semi-autonomous vehicle technology to truly work mandatory data sharing is essential. What is unclear is whether the other legal justifications for handling data are fit for purpose in the context of Cloud LSVA. The two closest analogies for non-consensual acquisition of data are CCTV (closed circuit television) and drone photography. A quick analysis of both situations may prove instructive.

9.1.4 CCTV analogy

CCTV use requires justification as to purpose. Thus CCTV is relatively easily justified if the purpose is to provide security as distinct from monitoring the activities of employees. In Cloud LSVA the justification of human safety would presumably be a strong justification of the technology. However, although it does justify the non-consensual acquisition of data, it does not provide a blank cheque so to speak. The data collection must be proportionate so that the data collected is adequate, relevant and not excessive. Moreover it cannot be used to justify data acquisition of personal data where there might be an expectation of privacy by data subjects. Furthermore, the area which is the subject of CCTV recording should have appropriate and sufficient signage indicating that data acquisition is taking place. Finally, information should be available to ensure that data subjects or other individuals are in a position to contact the data controller (and processor) to access the data protection policy in operation with respect to the CCTV image recording.

For Cloud LSVA technology this provide one solution. Provided the only use to which the data is being acquired for is public safety this would justify the non-consensual acquisition of personal data provided it was coupled with the following:

- Some indication that the vehicle is (a) recording images and (b) connected to the Cloud (for example, a coloured light on the vehicle which illuminates when the technology is in use)
- Clear manufacturer marking on the vehicle (for example the company nameplate or logo).

This would then provide 3rd parties with knowledge that they are being recorded and the information is being stored remotely as well as the identity of the entity making the recording (the manufacturer) who could be contacted with respect to their data protection policy.

The justification of CCTV would require a Privacy Impact Assessment as well as the risk analysis vis-à-vis recording of non-consensual images to increase transportation safety.

The CCTV approach provides the best alternative route in non-consensual personal data acquisition. However, it might be useful to examine the second option relating to drone photography.
9.1.5 Drone videography and data protection

Where Cloud LSVA captures external personal data, for example vehicle registration plates, pedestrian faces etc., the general principle is that only that information absolutely necessary to achieve the objective of Cloud LSVA should be acquired. General acquisition of data may be justified in the same manner as that of CCTV cameras as set out above, but even then it may require anonymization of the data (eg pixelating of vehicle registration plates, blurring of faces) by analogy to the proposed treatment of drones. In particular, the Article 29 Data Protection Working Party 01673/15/EN Opinion 01/2015 on Privacy and Data Protection Issues relating to the Utilisation of Drones offers some guidance. In some instances, facial profiling of pedestrians may be necessary (for example, are they paying attention at a crosswalk) and this will pose further difficulties for the acquired data.

In V2V communications privacy by design remains crucial. In that regard, the NHTSA Notice of Proposed Rule on V2V Communications (49 CFR Part 571) is useful. It proposes that no information which would identify the vehicle (either VIN or license plate) or owner/driver should be contained in the V2V communication. Further discussion is in train to minimize privacy issues in V2V communications. This can be read in conjunction with ISO/TC204/WG16 known as ‘ISO 24100 Intelligent transport systems – Basic principles for personal data protection in probe vehicle information services’ which provides additional material.

These technologies permit the acquisition of large amounts of data without the knowledge never mind the consent, of the data subjects involved. Moreover the potential for misuse of the acquired data is higher due in particular to the bulk nature of the acquisition. It seems that CLOUD presents the same issues.

The June 2015 Opinion of the EU Working Party on Privacy and Data Protection Issues relating to Drones represents an up to date position of best practice which can be applied to the development stages within CLOUD. The main provisions of this Opinion can be summarised as follows:

- Suitable criteria for legitimate processing:
 - Purpose limitation: processed only to the extent necessary for the purposes
 - Data minimisation: non-essential data should not be acquired
 - Proportionality: to avoid the acquisition of unnecessary personal data
- Transparency:
 - Need to inform the data subjects of the data acquisition
- Security:
 - Protection of the data through anonymisation techniques
 - Cyber security particularly where the data is held on a cloud platform

Criteria for legitimate processing: for the CLOUD programme the issues of data minimisation and proportionality are crucial. Only that data necessary to achieve the CLOUD objective should be acquired.
and that may require that CLOUD does not use the most technologically advanced equipment. For example, do the video recordings have to be of exceptionally high definition? Is it enough to be able to recognise that it was a truck and not a van in order to satisfy the purpose of CLOUD or would one need to be able to read the number plate of the van? The guiding principle should be: Just because I can does not mean I should. The equipment should be limited to what is necessary only.

Transparency: this is more contentious for CLOUD. How does one inform every individual that might possibly be the subject of data acquisition? In truth this is more likely to require specific legislation similar to that in CCTV operation and as recommended by the Working Group. However, in the meantime, one might consider thinking outside the box. In semi-autonomous truck development, the headlights change to a blue shade when the truck is on autopilot. Could some other visual sign be applied for CLOUD? More research from a legal point of view needs to be undertaken although it may be that responding to the issues of proportionality and security may minimise the importance of this particular issue.

Security:

Data anonymisation

One way of addressing transparency is to take steps to anonymise the data being acquired, which is also required to ensure the security of the information post-acquisition. The use of ‘sufficiency’ in data acquisition may provide some anonymisation, where for example the quality of the video recording is of insufficient quality to permit identification. In the absence of that, are there other ways of protecting the data subject: for example do the video recordings need to be identified by location? Is that crucial to the purpose for which the recording is to be used. A video recording of a data subject without any indication of the location would probably render it impossible to identify the data subject even if captured in high definition.

One issue of concern would be a solution which sought to anonymise the data after acquisition, say through blurring of facial details. CLOUD developers should not forget that the unaltered data on acquisition must comply with the rules as well.

Cyber security

There is a further distinct issue with security and that is the security of the data itself from unauthorised access. This is particularly important where the information is held in the cloud and may be hacked or otherwise breached. All stored information must be protected with the greatest possible level of protection from unauthorised breaches at all stages of development. This must be an integral element in the design and development process.

In many ways, a fuller analysis of these provisions presents as many difficulties as obtaining consent would. Anonymisation and pseudoanonymisation may not necessarily provide the relevant safeguards
required for data protection and in fact may simply put in an additional and expensive layer of quasi-protection that could be better achieved by the CCTV approach and strengthened protections in the access and storage of the acquired data.

Conclusion

Of course in the absence of specific regulatory provisions with respect to data acquisition for connected, autonomous and semi-autonomous vehicles any advice constitutes informed speculation only. Having said that, based on the analysis of a variety of primary sources, one is inclined to provide the following summary for the most likely best practice approach to the non-consensual acquisition of personal data in Cloud LSVA.

- Non-consensual acquisition of personal data would need to be justified by way of a risk assessment and Privacy Impact Assessment.
- The vehicle would have to signal to other road users and pedestrians that image recording was in operation
- The vehicle would have to have a clear manufacturer mark that would enable individuals to know who to contact
- A data protection policy would have to be in operation by the manufacturer and readily available upon request.

9.2 Data Controller and Processor

The GDPR essentially imposes similar liability on a data processor as currently exists on the data controller. In connected vehicles using Cloud LSVA technology the allocation of responsibility between controller and processor (and in certain situations one could be both a data controller and data processor) will need to be clearly defined within a contractual risk allocation framework.

9.3 Administration, Sanctions and Fines

Data protection policy will be made uniform through a “One Stop Shop” approach. Under this policy one of the national Data Protection Agencies will take the lead in any action for breach of these provisions with other national agencies acting in support. An overall co-ordination committee will attempt to create the uniformity in approach the failure of which in the previous provisions provided not only conceptual uncertainty but practical differential approaches at member state level.
The GDPR provides for fines up to €20 million or 4% of worldwide turnover in the event of a breach of data protection laws.

10 Recent case law

10.1 Cahen v Toyota Motor Corporation

Cahen v Toyota Motor Corporation is a case being brought by two Californian residents against Toyota and General Motors. It is part of a class action on behalf of other Californian residents. The two plaintiff purchased a 2008 Lexus RX400 and a 2010 Chevrolet Volt. The essence of their claim falls into two basic elements.

First, that the connected cars collect personal information and share that information with 3rd parties by way of an unsecured transmission.

Second that the connected cars are vulnerable to hacking rendering the vehicle open to being controlled by persons outside the vehicle.

In order to bring the case, the plaintiffs alleged they suffered harm from the misrepresentations of the manufacturers that the connected cars were safe and that had they been aware that this was not the case they would not have bought the cars. Only the first issue is of concern to Cloud LSVA and it is to this alleged invasion of privacy that we now turn.

Plaintiffs based their case on common law, Federal law and Californian constitutional law. However, they were unable to show any actual privacy breach arising from the transmission of the personal data. Instead they alleged potential future harm to their privacy rights which entitled them to a claim in economic damages, specifically the diminution in value between a data secure vehicle that they thought they had bought and the data insecure vehicle they actually received.

The court of first instance rejected their case based among other things on the fact that they even if they could establish that the transmission of data was not secure, they had not proven actual harm and could not rely on allegations of potential future harm. Indeed the judgment laid emphasis on the failure of the plaintiffs to demonstrate any real potential for the malicious or accidental release of sensitive information such as social security or credit card numbers. Essentially the court was indicating that although the information was personal in nature, it’s release would not lead to the traditional concrete forms of loss that arise in other cases where say credit cards details may become publically available or where the release gives rise to identity theft as is the case where social security numbers are released.

In any event, the court went on to say that even if the court was wrong and at law there was liability for potential future harm, plaintiffs could not establish economic damage since all vehicles in the US sold...
post 2008 would suffer from the same unsecure data transmission process and so all vehicles along with the plaintiffs would suffer a similar loss in value, thus there would be no specific loss to the plaintiffs.

The case was appealed to the Federal Circuit court, 9th district. The court there, with Judges Burzon, Friedland and Sessions, dismissed the plaintiff’s appeal against the decision of the lower court to summarily dismiss their claim. The thrust of the Circuit Court’s decision was that the plaintiffs had not established any actionable harm and in law this made it impossible to sustain an action based on the legal principles involved.

Although it is clear that the litigants appear agenda driven, the application of the new provisions of the GDPR to a similar set of facts might give rise to a different outcome. Liability under the GDPR is for breach of data and not based on the harm which might arise from that breach. This is a regulatory infringement. The plaintiffs sought a harm based remedy, that is the payment of damages for a claimed loss. In reality such claims are not likely given that the likelihood of a breach of the data acquired under Cloud LSVA will not normally give rise to a privacy breach causing civil harm. But it is the breach itself which both the Directive and the GDPR imposes sanction on and it is that which must be guarded against.

11 International Data Transmission and Storage

Sharing data with external actors must be consistent with the needs for which the data was initially gathered. If such information is to be shared with entities within the EU then, as the parties are both subject to EU law and the data protections provided thereunder, such sharing is more easily undertaken.

However sharing information with entities outside of the EU poses more difficulties. The guiding principle is that the data acquired may only be transferred where it can be established that it will benefit from the same level of protection as it would within the EU.

There are two possibilities:

First the EU has certified that a number of jurisdictions have sufficient data protection rules which are the equivalent of that which operates in the EU. These are:

- Norway, Liechtenstein and Iceland (EEA countries)
- Andorra
- Argentina
- Canada (commercial organisations),
- Faeroe Islands
- Guernsey
- Israel
- Isle of Man
- Jersey
Second, where the transfer is sought to a country other than one list above, it can only be undertaken where there is a contractual obligation on the external entity to manage the data in accordance with the same level of protection as arises under EU law. These contractual arrangements must use the EU Model Contract if one is to be certain that they are compliant with EU law. If the parties want to use their own contract they must get prior approval from the relevant data commissioner. This will involve submitting the proposed contractual provisions. This approach is certainly not recommended and it would be difficult to see why Cloud LSVA would depart from the Model Contract.

Finally issues may arise with respect to sharing information with state agencies for criminal justice purposes. It would be important that a protocol is put in place to deal with such requests.

The international nature of automobiles will give rise to jurisdictional issues as to where the data has been collected as well as where it is stored. The previous rule which allowed equivalency of data protection to permit dealing with EU data outside the EU remains even though Safe Harbour as a generic EU-US agreement was struck down by the EU courts. Its successor, Privacy Shield provides for continued data exchange based on organisations that have signed up to Privacy Shield principles. In any event the same affect can be achieved between the EU and other jurisdictions, including the US, through the use of standard contract provisions or binding corporate rules imposing such protections.

In 2018, an entity not established in the EU which either (a) offers goods or services within the EU or (b) monitors the behaviour of data subjects within the EU must nominate a representative within the EU to liaise with supervisory agencies and other stakeholders. Some aspects of Cloud LSVA may come within part (b).

11.1 The impact of the GDPR

The GDPR restricts the transmission of personal data to third countries unless it satisfies a specific compliance regime, and that would include any subsequent transmission of that data beyond the original transfer. Under the GDPR data may be transferred to countries whose legal regime is accepted by the European Commission as providing an adequate level of personal data protection to that of the EU provisions. However, this is not the only mechanism that may be used to validate a cross jurisdictional transfer of data. Even where the Commission has not accepted that the recipient country has an equivalent level of data protection to that of the EU there are two methods by which such transfers may be validated:

Standard Contractual Clauses (SCC)
Biding Corporate Rules (BCR)
Although these provisions were available under the old Directive, the GDPR provides for significant change to both SCC and BCR procedures. Much of this must be seen in the light of judicial challenges to national equivalency recognition of data protection agreed by the Commission with certain third countries such as the US, see Schrems case (C-362/14).

Moreover, the withdrawal of the UK from the EU will create a substantial enlargement of third country transfer restrictions as the UK moves out of the EU orbit and becomes a third country. At the moment, it is difficult to see that the UK could not be recognised as equivalent to EU rules as presently the UK operates EU rules, up to and including the GDPR. However, that may need to be monitored for potential divergence over time.

Cloud technology by definition involves the transfer of data from a moving vehicle to a data storage facility and vis-a-versa. That vehicle is a moving object which may not necessarily be located within the EU at the time of transmission and, for a variety of reasons may therefore end up transmitting that data to a Cloud based entity outside the EU. Thus the GDPR presents more difficulties for Cloud LSVA technology than might be initially believed. The difficulties are not without consequence as a dramatic feature of the GDPR has been to increase sanction and monetary fines for violation of data privacy.

Before turning to deal with the three primary methods of lawful data transmission outside the EU, it should be noted that there is no provision for the transfer of data on foot of a legal requirement from a third country.

The three primary methods of lawfully transmitting data outside of the EU are

- Equivalency (or Adequacy)
- Standard Contractual Clauses
- Binding Corporate Rules

We will deal with each in turn.

Equivalency

Article 45 of the GDPR sets out the grounds for equivalency, or more accurately referred to as adequacy decisions, that is to what extent does the country to which the data is being transferred provided adequate data protection frameworks. Although much is made of the term ‘adequacy’ it is suggested that equivalency better captures what is being sought, although some may regard that as controversial.

Nonetheless in Schrems case (C-362/14) the court essentially imposed an equivalency requirement on the Commission before they could make a valid designation. The court confirmed that a Commission
adequacy decision means that the third country or specified entity ensures “an adequate level of protection essentially equivalent to that ensured within the [European] Union.”

The process however goes far beyond ensuring literal equivalency in terms of legislative or regulatory frameworks in the third country but includes general state compliance with human rights norms, the overall criminal law and security framework among other things.

When satisfied that essential equivalency exists, the Commission will designate transfers to that jurisdiction as authorised and there is no requirement for any action on the part of the entity seeking to transfer the data outside of the EU. However the Commission maintains a list of such countries and, given that they may be the subject of periodic review by the Commission (and as such un-designated as being equivalent) there must likewise be vigilance in checking that designation still exists.

Standard Contractual Clauses

The use of Standard Contractual Clauses (SCC) has been recognised under the original Directive, and, although controversial, the GDPR actually streamlines this process and makes it more user-friendly. Existing SCC remain valid but are subject to revocation. Normative SCC which have been adopted by the Commission or national supervisory authorities can be used without prior authorisation.

Although it is possible to draft an ad hoc or unique SCC, they must receive prior supervisory authority approval. The use of such SCC is not to be recommended.

Binding Corporate Rules

Binding Corporate Rules (BCR) are now expressly provided for under Article 46 of the GDPR. BCRs are a useful mechanism for intra-corporation transfer of data where that corporation operates both within and outside the EU and are particularly well suited for use with the Cloud LSVA technology. There are two key advantages to the use of the BCR procedure: cost and flexibility. First, the administrative burden, and thus cost to a commercial entity, is significantly lowered and second the BDR enables companies to update and specialise their rules in accordance with their current needs.

One must obtain prior approval from a national supervisory body before relying upon a BCR and as the name suggests, a BCR is confined to corporate entities only but is sufficiently widely drawn so as to include group entities (for example, subsidiaries), or indeed groups of enterprises – see Article 4(2) and Recital 110. Again the flexibility of this procedure has proven alluring to most commercial entities.

A variant of the BCR has also been introduced in Article 49 of the GDPR, specifically codes of conduct and certification. Essentially these provisions allow for the introduction of self-regulation, although admittedly through trade and professional associations. Such codes or certification must have prior approval from national supervisory body (Article 38). The purpose of this extension is to satisfy compliance with the GDPR through a normative code that enables the data controller or processor to
prove that they have adequate safeguards in the handling of personal data. Ultimately the aim is to provide a mark that will identify compliance with these codes and thus provide reassurance to data subjects that their privacy is being protected to the same extent that would apply as if their data were held exclusively within the EU.

Derogations

Almost all of the derogations available under the Directive have been replicated in the GDPR but a new derogation from the rules on transfer stated above has been introduced.

Essentially, where a transfer cannot be dealt with under any of the above three headings then a transfer of data outside of the EU may take place provided it is “not repetitive, concerns only a limited number of data subjects, is necessary for the purposes of compelling legitimate interests pursued by the controller which are not overridden by the interests or rights and freedoms of the data subject, and the controller has assessed all the circumstances surrounding the data transfer and has on the basis of that assessment provided suitable safeguards with regard to the protection of personal data.”

Given the restriction that the transfer not be “repetitive” this provision is unlikely to be of concern to Cloud LSVA for which the data transfer will naturally be repetitive. However the exact ambit of this provisions will take time to work out and will require some element of guidance from the Commission and national agencies.

Sanctions

Finally, the GDPR provides for enhanced sanctions for violations of its provisions. The fines now range from an administrative fine of up €20 million or in the case of a corporation, 4% of annual global turnover in the preceding year whichever is the greater.

The factors in deciding the level of sanction include “the nature, gravity and duration of the infringement, the intentional character of the infringement, actions taken to mitigate the damage suffered, degree of responsibility or any relevant previous infringements, the manner in which the infringement became known to the supervisory authority, compliance with measures ordered against the controller or processor, adherence to a code of conduct and any other aggravating or mitigating factor.”

12 Commercial interests in the data

It should be noted that the Cloud LSVA project is not required to deal with the commercial interests that may arise as a result of the data acquired but only with its impact on data privacy and the protection of
the data subject to have that right protected. However, during the mid term review, a questions arose with respect to the protection of commercial interests in the acquired data and it was suggested that the issue would be lightly referenced in the final report.

The acquisition of this data provides a pool of valuable information that has the potential to have significant commercial value for interested parties. The development of autonomous and semi-autonomous vehicle technology depends on the acquisition of hundreds of thousands if not millions of driven kilometres so as to acquire as many possible situations to provide reference points for computer programming of the technology. This data, in the form of video capture with respect to Cloud LSVA technology, thus represents an investment of time and effort.

The primary mechanism to secure whatever commercial interest is in the acquired data is through restricting access to that data by other competitors. Thus company A who has acquired the video footage will not share that footage with company B who is also in the same business. This approach is reflected in corporations such as Coca Cola and Kentucky Fried Chicken who protect their commercial interest in the underlying recipe for their product a closely guarded secret.

Recent industry moves have resulted in a strengthening of the secrecy surrounding the acquired data, often framed within the context of data privacy. For example, voluntary principles agreed by the Alliance of Automobile Manufacturers (AAM) and the Association of Global Automakers covering almost all major automobile companies, which will come into effect for model year 2016 for subscription services and model year 2017 for everything else, in essence restricts the ability of these companies to share data between themselves or other entities. This will have the added impact of further using privacy to secure each companies commercial interest in analysing the data which has been acquired from video capture.

Thus self-created secrecy or indeed secrecy based on data privacy either by way of regulatory frameworks or voluntary codes of conduct within the industry provide a first line for the protection of any commercial interest in the video data acquired under Cloud LSVA. It is an unexpected consequence of protecting personal privacy that it may in fact result in less openness in the development of the technology.

In addition, in the EU, the Database Directive 1996 provides for the commercial protection. In the US, since the decision in Feist, one cannot own a compilation of factual data unless the facts have been “selected, co-ordinated or arranged in such a way that the resulting work as a whole constitutes an original work of authorship” In the EU, however, the Database Directive 96/9/EC governs these situations. The Directive defines a database as collection of independent works, data or other materials arranged in a systematic or methodical way and individually accessible by electronic or other means. There are wo ways in which this data can be protected. First, copyright through creativity (similar to Feist) or second, “Sweat of brow” – the sui generis ‘investment’ right.

The sui generis right prohibits the extraction or re-utilisation of any database in which there has been a substantial investment in obtaining, verifying or presenting the data contents. Thus there is no requirement for creativity or originality. This right lasts 15 years from the date the non-creative database was made.

There are certain exceptions in the Directive which permit third party use.
A *sui generis* right granted under this Directive does not apply to databases created by companies located outside the European Union. The Directive has not been as successful as one might have thought; databases that arise as a by-product of doing business do not attract database right protection. Moreover, the right does not cover that information which was created by the commercial enterprise, so that in *Football DataCo* no database right arose over information regarding the scheduling of matches. Thus it can be difficult to establish a database right.

In fact this may be an advantage to companies seeking to protect commercial interests in such data. In Ryanair the European Court of Justice ruled that PR Aviation was not permitted to undertake price scalping since the information on Ryanair’s website did not constitute a database. If it had constituted a database then under the Directive, PR Aviation would have been allowed to access the information for its own purposes. However, since the information did not qualify as a database, PR Aviation’s use of that data was restricted by the contractual provisions which Ryanair imposed on all users of the website and which expressly prohibited re-use of their pricing data.

Thus, although the Database directive may provide one possible formal method of commercially exploiting video data captured using Cloud LSVA technology, careful thought should be made before moving away from secrecy as the primary protection method. However, the Ryanair case leads us neatly to the another issue that can usefully be addressed at this juncture: the use of contractual provisions to allocate data privacy risks.

13 Contractual allocation of data privacy risks

It seems likely that a number of sub-contracted service providers will be involved in processing personal data acquired under the Cloud LSVA programme. Thus the paradigm for this report, namely that the video capture is acquired and processed by one entity only may conflict with real world commercial structures. Technically such allocation is not part of the deliverable since a full exposition of these contractual provisions involves the practice rather than the research process and is limited by the flexibility and uniqueness of individualised contracts and the contracting parties. However, as a response to the feedback at the midterm review, an entire new section has been added to the report.

The real world commercial structures through which Cloud LSVA technology will be implemented does not impact on the overall responsibility and liability for breach of this information. However, the allocation of that risk, and in particular the consequences for breach of obligations under the data privacy rules and the distribution of the sanctions involved do need to be taken into account particularly when involving sub-contracted third parties in the process.

A significant change in the GDPR has been the extension of liability for data breach from the data controller to now include the data processor. Liability, risk allocation and indemnifications therefore need to be an integral element of any contractual arrangement between interested parties and the GDPR appears to have moved the situation on from simply the use of standard clauses and towards a pro-active due diligence investigation of the capabilities and commitment of sub-contractors to the principles of data protection, including not merely privacy processing but also Cloud security of personal...
data. This due diligence will require additional checks on the internal operation and processes of the sub-contracted party that will provide a degree of certainty with respect to standards of compliance with data protection and security.

Perhaps one of the best aids in this process is the EU Cloud Code of Conduct which is about the only industry wide standard that has been an effective mirror of the EU regulatory process and may provide more guidance in the absence of finalised view from the Article 29 Working Group on Cloud related issues. More information can be had from https://eucoc.cloud/en/home/ but in essence the Code of Conduct can be viewed ranking alongside the contractual provisions between the parties, although certainly not replacing them. As the Code states

“The purpose of this voluntary Code of Conduct (Code)\(^3\) is to make it easier and more transparent for cloud customers to analyse whether cloud services are appropriate for their use case. The transparency created by the Code will contribute to an environment of trust and will create a high default level of data protection in the European cloud computing market, in particular for cloud customers such as Small and Medium enterprises (SMEs) and public administrations.

The Code was created with “business-to-business” (B2B) cloud services in mind (where the CSP is typically acting only as a data processor to the customer), and may not address all data protection issues arising in the context of “business-to-consumer” (B2C) services (where the CSP may act as a data controller or where the cloud consumer may be covered by the household exemption \(^4\)).” (footnotes omitted)

It is useful at this juncture to extract the relevant section of the Code’s guidelines

“5.1 Contractual specification of the terms and conditions of the CSP’s services

The Services Agreement between the CSP and its customer shall determine the terms under which the cloud service is delivered. The Code does not replace a contract between the CSP and the customer. However, as highlighted in section 4 above, the CSP must ensure at all times that its contractual rights and obligations described in the Services Agreement do not lower the level of data protection as provided by this Code. The rights and obligations described in this Code must apply at all times, and the CSP must resolve any conflict between the Code and its Services Agreement before using this Code.

Each party shall remain responsible for compliance with its obligations under applicable data protection law, including in particular in relation to security measures. In case of disputes on contradictions or ambiguities between the Services Agreement and the Code, complaints may be raised and addressed in accordance with section 5.8 (Cooperation with the customer) and with the complaint mechanisms established in the governance section of the Code.

Unless agreed otherwise in the Services Agreement, the CSP shall act only as a processor on behalf of the customer acting as a data controller, with respect to personal data processed pursuant to the Services Agreement. The Services Agreement shall specify the purpose(s) for which the CSP may process personal data on behalf of the customer, as well as the terms under which the data may be processed. The Services Agreement shall also specify the allocation of responsibilities between the parties.
If the Services Agreement expressly authorizes the CSP or selected third parties to determine the purposes for which the Customer’s personal data are processed outside the context of the provision of the Cloud Services as specified in the Services Agreement, the CSP or selected third party would be qualified as a data controller or as a joint data controller, entailing additional obligations for the CSP or third party.

5.2 Processing Personal data lawfully

The data controller remains responsible for complying with its obligations and duties under applicable data protection law. The customer acting as data controller may need to verify whether the CSP services comply with its legal requirements, taking into account the terms of the Services Agreement and the Code.

In most circumstances, the customer will be the data controller. However, there may be cascaded processors, where the customer is itself acting as a processor on behalf of a data controller. For instance, a company may contract with a cloud provider, who outsources services to another cloud provider that complies with the Code. In that case, the company is the data controller, but the initial cloud provider is the customer in the sense of this Code. In such cases, the relevant data controller (the company in this example) is not in direct contact with the CSP.

The CSP shall at all times execute the services according to the provisions of the Services Agreement. The CSP may not process personal data processed pursuant to the Services Agreement for its own purposes without the express permission of the customer or as agreed by the customer in accordance with the Services Agreement. Incidental processing of personal data by the CSP to ensure the security, operational maintenance, analysis or evaluation of the CSP services for the benefit of all of the CSP’s customers and not having any adverse impact on the level of data protection of the data subjects must be clearly specified in the Services Agreement, and shall not be presumed to constitute processing for the CSP’s own purposes.

The customer will not use the CSP’s services for any unlawful or illegitimate purposes, or in violation of the Services Agreement, the Code, or applicable law. It will not impose obligations on or issue instructions to the CSP via or in accordance with the Services Agreement to process personal data for purposes which are not fair and lawful.

The customer shall remain responsible for keeping accurate the personal data processed pursuant to the Services Agreement and, where necessary, up to date, in accordance with its obligations under applicable data protection law.

The CSP shall implement measures which satisfy, or if retention is managed by the customer, which enable the customer to take steps to satisfy, the requirements as expressed in accordance with the Services Agreement that personal data processed pursuant to the Services Agreement will not be retained longer than necessary according to the CSP’s commitments or applicable law, and shall make any relevant elements of its data retention policy available to the customer.” (footnotes omitted)

One can see therefore that it is crucial that in the implementation phase of Cloud LSVA technology, as well as integrating privacy by design, the allocation of risk between the various parties needs to be addressed in a coherent and robust manner.
First, primacy needs to be given to strong contractual provisions enforcing regulatory compliance on sub-contractors with respect to data protection provisions under the GDPR.

Second, the onus is on the parties to ensure that such compliance is part of the internal processes of the sub-contractor and the use of guidance from agreed Codes of Conduct such as described above are an integral element of this analysis.

Third, a tick box exercise of taking sub-contractors agreement needs to be replaced with a more robust analysis of practice over agreement.

Finally, a clear exposition of liability, particularly in the context of radically increased regulatory fines under the GDPR as discussed earlier, together with valid indemnifications underpinned by relevant insurance policies if available (but at the very least funded indemnity provisions) needs to be spelled out in any contractual based sub-contracted process.

14 Privacy by Design and Privacy Impact Assessment

Although not technically part of the deliverable or the work package, it became clear early on that in order to ensure privacy by design principles were incorporated into the development of the thinking around Cloud LSVA technology, data protection and privacy issues were included in the weekly telcos and were always an integral part of the agenda for the F2F meetings. In discussion with other members of the consortium, it was also concluded that to run a Privacy Impact Screening and a subsequent Privacy Impact Assessment (PIA) if deemed necessary would provide a useful capstone for the project’s approach to privacy by design and serve as a useful experiment and validator of privacy by design philosophy. However, as it would be unwise to stray from the research nature of this deliverable into a more practice based exercise with the attendant liability issues that might give rise to, the results of this exercise with respect to the PIA would not form part of the deliverable but might be made available within the overall project at a later stage.

This section therefore deals only with the form and structure of these assessments and indicate in a formal way the commitment of the project to privacy by design principles that were implemented in the telcos, inter party discussions within the project and the plenary discussions and presentations at the various meetings. In that way it is designed to demonstrate that this deliverable was an integral element in the progress of the technology under Cloud LSVA.

Both the Privacy Impact Screening and the Privacy Impact Assessment questionnaire are set out in full below. They are based on best practice from national member state supervisory agencies as well as private enterprise.
Privacy Impact Screening Protocol

General

Cloud LSVA is a Horizon 2020 research project dealing with the development of large scale video recording and transmission to the Cloud in order to facilitate enhancements in semi-autonomous vehicle technology. In particular it will require the non-consensual acquisition of data from road users based on the societally positive goal of enhanced road safety.

Although this is a research project to which different privacy constraints apply, it is a research project designed to assist in the introduction of real world technology into the public domain. As a result of this, the approach taken is to ensure that data protection and management in the development of the technology is undertaken in a manner which will not pose any functional constraint on any potential full marketplace introduction.

The first step undertaken by Cloud LSVA is to undertake a Privacy Impact Screening to assess whether a full Privacy Impact Assessment is required. The Screening uses an ICO template and is based on existing EU and member state data protection regulation including future proofing the screening by assuming the introduction of the General Data Protection Regulation in May 2018.

The PIS was based on considered responses to a number of questions and is set out below:

1. Will the project involve the collection of new information about individuals?
YES: It will involve the acquisition of data about location and telemetry of vehicles driven by individual data subjects as well as additional information about other road users.

2. Will the project compel individuals to provide information about themselves?
YES: the information will be acquired without the consent of the individuals although it will be acquired on justifiable grounds, specifically road safety.

3. Will information about individuals be disclosed to organisations or people who have not previously had routine access to the information?
YES: the information which will detail vehicle, driver and other road user location and responses will be disclosed to some organisations not normally associated with access to such information, particularly organisations which will use the data for deep learning.

4. Are you using information about individuals for a purpose it is not currently used for, or in a way it is not currently used?
YES: the information will be used to direct semi-autonomous responses within the vehicle to external situations. It may also communicate that information between vehicles and other road infrastructure.

5. Does the project involve you using new technology which might be perceived as being privacy intrusive? For example, the use of biometrics or facial recognition.
YES: It is possible that facial recognition may ultimately form part of the technology when it is put into production. However, the new technology will acquire data which may be privacy intrusive, for example driving styles, speed, location etc.

6. Will the project result in you making decisions or taking action against individuals in ways which can have a significant impact on them?

NO: The project is a research programme and remains several steps away from being released into the public domain. Thus during this phase, no decisions which will have a significant impact upon individuals will be made. However, it should be noted that the research development of the technology will require its implementation in a manner that may result in a significant impact on individuals in the context of liability or other issues.

7. Is the information about individuals of a kind particularly likely to raise privacy concerns or expectations? For example, health records, criminal records or other information that people would consider to be particularly private.

NO: In general the answer to this would be no inasmuch as that people would not consider the information to be particularly private, such as location etc. But these could pose some significant privacy concerns for some individuals either personally or in terms of the criminal justice system.

8. Will the project require you to contact individuals in ways which they may find intrusive?

NO: there is no expectation that the individuals would be contacted in any particular way by the data collector. However, the data might be capable of use by other actors in the event of accident or for the purposes of a criminal investigation or similar.

Conclusion:

On balance, the conclusion from the screening protocol identified above suggests that the balance lies in favour of conducting a full Privacy Impact Assessment (PIA).

Although this project is research about technology with the potential to develop into commercial products, the belief is that the Privacy by Design imperative requires a PIA to ensure that subsequent commercialization does not result in functionality constraints because compliance with privacy regulation was not integrated into this phase of the research.

Next Steps:

The conduct of a full PIA will now involve the following stages:

First, collection from the participants in the project of all actual and potential data flows from acquisition to storage, access and deletion.

Second, using this information, it will be possible to identify the key privacy risks and the associated compliance risks for the project.
Third, the identified risks will be the subject of risk reduction strategies where appropriate and these will be integrated back into the project accordingly.

The next document distributed was to each participant of Cloud-LSVA

Privacy Impact assessment SURVEY

Following a privacy impact screening assessment it has been decided to undertake a full Privacy Impact Assessment within the project.

There are three steps to this. At each and every level, full consultation within the consortium is essential. The process is designed to be open and flexible. It is not designed to hinder the research being undertaken but to ensure that there are no subsequent constraints on the functionality of the research due to data protection and management regulation.

The three steps are as follows:

First, collection from the participants in the project of all actual and potential data flows from acquisition to storage, access and deletion.

Second, using this information, it will be possible to identify the key privacy risks and the associated compliance risks for the project.

Third, the identified risks will be the subject of risk reduction strategies where appropriate and these will be integrated back into the project accordingly.

This element is to deal with the first part of the process. Each WP leader should answer the following question as fully as possible, bearing in mind that in certain situations the correct answer may be “Not Applicable”. However, it is better to be over cautious than under cautious.

If you need clarification on anything, please consult with ULIM.

Task

Within your work package describe any potential information flow on the collection, use and deletion of personal data arising from the technology being developed under the project. It may be useful to refer to a flow diagram or any other way of explaining data flows.

Responses should be brief and of a non-technical nature.

Do you collect data of any description under your part of this project?

Briefly describe the nature of the data collected.

Is this data collected with or without consent?
How is this data stored initially?

Is this data the subject of transmission to a second or any other subsequent location?

How is this transmission to occur?

Who will have access to the data at any given time?

How are they authorized to have access to this data?

How is access logged and recorded?

Will this data be used for purposes other than it was first acquired for? If so, please explain.

What security protocols cover this data storage location?

How long is this data expected to be stored?

At the end of this period, how is the data to be deleted?
15 Conclusion

In an ideal world, there would be a uniform internationally agreed regulatory framework that would prioritise safety over data protection. That is not nor is it likely to be the case for some time to come. The public resistance to autonomous automotive technology although anecdotal appears strong. It seems that the public will tolerate a significant level of accidents caused by human operators, even one such accident as a result of autonomous technology may be one accident too many for the general public. The creeping acceptance of semi-autonomous ADAS where humans still retain some control seems to underpin the perception that we as a society will accept mistakes caused by human error in a way that we are currently unable to accept a far lower level of mistakes by machines.

There is little doubt that this reluctance has spread to data acquisition. The resistance to the EU programme (eCall) which would locate vehicles and passengers who had been involved in an accident, thereby speeding emergency response times is surely indicative, if not determinative. Similar private based services are often used as a selling point for automobiles so it may well be that the mistrust is of the state and not of the data. Significantly overlooked in that equation is the fact that private enterprise is more likely to commercialise any such data in a way that the state would not: for example suppose two vehicles are involved in an accident; the first sends a signal via a state system which alerts the nearest emergency service, the second may send a signal to a preferred emergency service who has paid for that privilege but might not necessarily be the closest to the crashed vehicle.

However the remit of this deliverable is more confined to survey the legal obligations to protect data privacy in the development of Cloud LSVA technology.

This new technology will involve both the consensual and non-consensual acquisition of personal data from data subjects and is now governed by enhanced data protection provisions from the GDPR. The net effect of this Regulation will be to place manufacturers using this technology in a legal position almost identical to that of Google and Facebook. Car manufacturers will in addition to making physical vehicles also become responsible for content and data management.

Further, other contributors to this technology, including contracted work to other IT service providers, across the supply chain to the ultimate vehicle will likely be exposed to liability based on being either data processors or data controllers. Moreover the GDPR imposes higher levels of due diligence in the sub-contracting process.

There will be a role for contractual allocation of that risk, indemnification for liability and insurance or bond cover for same. In doing so, there is a gap between the implementation of the GDPR and its application to Cloud based systems. The use of industry Codes can be of significant assistance in that regard.

The only way of managing this liability risk in data management is to ensure processes conform with the over-arching provisions of the GDPR from acquisition to destruction. At each stage of the development of the technology, the privacy impact consideration needs to be addressed. Just because the technology can do something does not mean that it will be allowed to do so. Best efforts should be made to ensure
regulatory compliance with existing laws no matter how difficult. If the technology cannot be made compliant but is essential to the proper functioning of the vehicle safety feature, consideration should be given as to how risk and liability allocation can be managed using contractual provisions. The existence of international standards of best practice in this area will also be of assistance. General ISO standards in the ISO 27000 designation, such as in particular ISO ISO 27001 (Information Security Management System) and ISO 27032 (Guidelines for Cybersecurity) will provide some guidance with respect to these obligations but the fast moving nature of the technology will maintain the challenges discussed in this paper.

Given the nature of the automobile, in particular its mobility, the international handling of data and transfers across jurisdictions becomes important, more so as the borders of the EU become more complex with the withdrawal of the UK. This however may not be as insurmountable because while the GDPR creates more control of international transfers of data, it does streamline certain exceptions such as the Standard Clause Contacts and the Binding Corporate Rules as well as introducing further exemptions such as Certification.